
A Technical Friend for PC ARC/INFO® Users
And Other Desktop GIS Software Volume 7 Number 5

Icon Key
PC ARC/INFO

ArcView

Idrisi

Inside: ArcView 3.2

ArcView 3.2 1 Version 3.2 has been shipping since September. In addition to fixing
a number of nasty bugs1, some significant new functionality has been
added.

New Avenue Classes

The Transform2D class allows moving, scaling, rotating, and
mirroring shapes. For example, the following code rotates a shape
about an arbitrary axis point:

theTrans = Transform2D.Make
theTrans.Move(0@0 - AxisPoint)
theTrans.Rotate(theAngle)
theTrans.Move(AxisPoint)
newShape = oldShape.Transform(theTrans)

Before: After:

Note that the rotation angle is in degrees. Use oldShape.ReturnCenter
as the axis point to rotate the shape about its center. The online help
under "Transform2D (Class)" contains additional examples.

Another new Avenue class is VTabSort, which allows you to sort
tables on multiple columns and export the results:

vs = VTabSort.Make(theVTab,flist,slist,false,true)
if (ExportSorted) then
 vs.Export(out_fn,dBASE)
 return nil
end

See "sorttab.ave" in the PLP OnLine Code Pack for a more complete
example.

(Continued on page 2)

Binary File I/O 3

Cursors and Forms 5

Rotating
GraphicText

11

Stream Ordering 13

Blank Variables 16

CA/HI/NV/Guam ESRI
Regional User’s
Conference

16

Point Line Poly 2 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

POINT LINE POLY is published by Pierssen Publishing, 3125 West Wilson Drive, Flagstaff, AZ USA
86001. Electronic subscriptions: 6 issues $10 in US funds. Single Issues $2. E-mail and Web access is
required. Send subscriptions and fulfillment questions to PLP, piersen@primenet.com. Phone/FAX (520)
774-7905. Or mail to the above address. Submit material and technical questions to The Editor, at one of
the above addresses.

© Copyright 1999, Pierssen Publishing. All rights reserved. Point Line Poly is an independently produced publication of
Pierssen Publishing.

ISSN: 1099-2324

ESRI, ARC/INFO, PC ARC/INFO, and ArcView are registered trademarks; Data Automation Kit (DAK), Simple Macro Lan-
guage (SML), and Avenue are trademarks of Environmental Systems Research Institute, Inc. All other company and product
names mentioned are property of their respective owners.

POSTMASTER: Send address changes to: Point Line Poly
 Pierssen Publishing e-mail: piersen@primenet.com
 3125 West Wilson Drive
 Flagstaff, AZ USA 86001

NOTICE: Due to differences in hardware and software configurations, and differing user requirements, information published in
PLP may or may not be applicable to specific installations and user requirements. To ensure the accuracy of the information
published in PLP, Pierssen Publishing specifically disclaims responsibility for errors and omissions or the ability of users to im-
plement recommendations published in PLP.

Say, what? “It's possible for one never to transgress a single law and still be a bastard. And vice versa. Actually it's
only a question of convenience.” Hermann Hesse, Demian

Other Avenue improvements include additional
geocoding requests, storing environment variables
with projects, and setting densification parameters
for reprojection.

Projection Utility

This standalone utility, developed using VB and
MapObjects2, supports a number of standard
projections and datum transformation methods
including NADCON (sorry, no CNT). Users also
have the ability to define custom projections: see the
utility's online help FAQ for an example of defining
Albers.

One useful feature is the ability to associate
projection definition (.prj) files with a shapefile, thus
providing an essential source of metadata commonly
lacking in shapefile datasets.

The utility has a wizard interface, but a "quiet"
option is available which allows running the
application from a command prompt. For example,
the following command will convert a shapefile from
State Plane NAD27 feet to UTM NAD83 meters3:

projutil -Q -ID . -OD . -IF az_sp.shp -
OF az_utm.shp -IC
NAD_1927_Arizona_Central -OC
NAD_1983_UTM_Zone_12N -IG 108001

Although very slow and cumbersome in execution,
the utility should be useful for AV users lacking
access to PC ARC/INFO or DAK.

SDTS Translators

The SDTS Raster to Grid translator allows the
creation of grids from DEM files. I haven't been
able to get the interface to work with full pathnames,
but the application may be run from AV's BIN32
directory at the command prompt (having the BIN32
directory in PATH doesn't suffice):

sdtsr2g c:\0home\test\plp\dem\7332 c:
\0home\test\plp\demgrid

SDTSP2A converts NGS control point data in SDTS
format4 to an ARC/INFO coverage:

(Continued on page 3)

Point Line Poly 3 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

(Continued from page 2)

sdtsp2a c:\0home\test\plp\ngs\plp1 c:
\0home\test\plp\ngscov

Note that attribute tables are not automatically joined
to the PAT.

Conclusion

Other features of 3.2 include an upgrade of Crystal
Reports to version 7, some new data format viewers,
and upgrades and patches to certain extensions5.
Also, the ESRI Data & Maps for the USA have been
converted from NAD27 to NAD83. Additional
information is available in the online help, under
"What's new in ArcView GIS 3.2".

Overall, 3.2 offers a fair amount of new functionality
for a modest price. If you have 3.1, the upgrade is
worthwhile for the bug fixes alone. And if you've
been holding off upgrading from 3.0, now's the time
to do so.

1The line symbol cap and join problem has not yet
been fixed, though ESRI has identified it as a known
issue. Also, Polygon.ReturnCenter still doesn't
return the true centroid, though the online help now
explains the method used to obtain the point.
2The projection utility is only available to Windows
users. Some utilities, such as the SDTS translators,
are available to Windows and Solaris users.
3An Access table containing all the EPSG names and
codes may be downloaded at this site: http://www.
petroconsultants.com/products/geodetic.html
4Available at http://www.ngs.noaa.gov/datasheet.
html
5The CAD reader upgrade to support AutoCAD 2000
format wasn't shipped with the CD, but should be
made available for download when ready. Check
www.esri.com for more info.

PLP

Binary File I/O HACKER’S CORNER

Because Avenue does not support binary file I/O, it
is necessary to develop external code to do so. The
most convenient method is to create a DLL to handle
requests from Avenue. "Avbinio.dll", in the PLP
OnLine code pack, includes the following routines:

FILE * OpenRead(char * path);
FILE * OpenWrite(char * path);
int ReadByte(FILE * stream);
int ReadInt16(FILE * stream);
int ReadInt32(FILE * stream);
int ReadFloat(FILE * stream);
int ReadDoubleAsFloat(FILE * stream);
int GetIntVal();
float GetFloatVal();
int WriteByte(FILE * stream, int val);
int WriteInt16(FILE * stream, int val);
int WriteInt32(FILE * stream, int val);
int WriteFloat(FILE * stream, float
val);
int WriteFloatAsDouble(FILE * stream,
float val);
int Close(FILE * stream);

OpenRead and OpenWrite return file handles:

FILE * OpenRead(char * path)
{
 return fopen(path,"rb");
}

Routines to read data return a status value (0 if
successful, -1 if null file handle, -2 if EOF, -9 if read
error) and store the value read in a global variable:

int ReadByte(FILE * stream)
{
 unsigned char B[1];
 size_t f_read;
 if (stream == NULL)
 return -1;
 f_read = fread(B,sizeof(unsigned
char),1,stream);
 if (ferror(stream))
 return -9;
 if (feof(stream))

(Continued on page 4)

Point Line Poly 4 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

(Continued from page 3)
 return -2;
 IntVal = (int) B[0];
 return 0;
}

To retrieve the value read, use GetIntVal or
GetFloatVal:

int GetIntVal()
{
 return IntVal;
}

The Write routines return 0 if successful, -1 if null
file handle, and -9 if write error:

int WriteByte(FILE * stream, int val)
{
 unsigned char B[1];
 B[0] = (unsigned char) val;
 size_t f_write;
 if (stream == NULL)
 return -1;
 f_write = fwrite(B,sizeof(unsigned
char),1,stream);
 if (ferror(stream))
 return -9;
 return 0;
}

Note the ReadDoubleAsFloat and
WriteFloatAsDouble routines; these exist because
Avenue does not support a Double
DLLPROC_TYPE, and should be used with care.
The following script is an example of reading and
writing byte values in Avenue using the avbinio
DLL:

'**** define DLLProcs

bioDLLName = "$AVBIN\avbinio.dll".
AsFileName
bioDLL = DLL.Make(bioDLLName)
bioOpenRead = DLLProc.Make
(bioDLL,"OpenRead",
#DLLPROC_TYPE_POINTER,
 {#DLLPROC_TYPE_STR})
bioOpenWrite = DLLProc.Make
(bioDLL,"OpenWrite",
#DLLPROC_TYPE_POINTER,

 {#DLLPROC_TYPE_STR})
bioReadByte = DLLProc.Make
(bioDLL,"ReadByte",#DLLPROC_TYPE_INT32,
 {#DLLPROC_TYPE_POINTER})
bioGetIntVal = DLLProc.Make
(bioDLL,"GetIntVal",
#DLLPROC_TYPE_INT32,{})
bioWriteByte = DLLProc.Make
(bioDLL,"WriteByte",
#DLLPROC_TYPE_INT32,
 {#DLLPROC_TYPE_POINTER,
#DLLPROC_TYPE_INT32})
bioClose = DLLProc.Make(bioDLL,"Close",
#DLLPROC_TYPE_INT32,
 {#DLLPROC_TYPE_POINTER})

'**** write test file

vlist = {37,42,45,0,3}
tname = FileName.GetTmpDir.MakeTmp
("test","bin").GetFullName

fh = bioOpenWrite.Call({tname})
for each v in vlist
 result = bioWriteByte.Call({fh,v})
 if (result = -1) then
 MsgBox.Error("Error opening file
for write","")
 return nil
 elseif (result = -9) then
 MsgBox.Error("File write
error","")
 return nil
 end
end
result = bioClose.Call({fh})
if (result <> 0) then
 MsgBox.Error("Error closing write
file","")
 return nil
end

'**** read test file

vlist2 = List.Make

fh = bioOpenRead.Call({tname})
while (true)
 result = bioReadByte.Call({fh})
 if (result = -1) then
 MsgBox.Error("Error opening file
for read","")
 return nil

Point Line Poly 5 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

(Continued from page 4)
 elseif (result = -2) then
 '**** EOF reached
 break
 elseif (result = -9) then
 MsgBox.Error("File read
error","")
 return nil
 end
 result = bioGetIntVal.Call({})
 vlist2.Add(result)
end
result = bioClose.Call({fh})
if (result <> 0) then
 MsgBox.Error("Error closing read
file","")

 return nil
end

theMsg = "Values read:"
for each v in vlist2
 theMsg = theMsg + NL + v.AsString
end
MsgBox.Report(theMsg,"")
File.Delete(tname.AsFileName)

Examples of reading and writing other value types
are in the PLP OnLine Code Pack.

PLP

Cursors and Forms

In V7N4 we discussed emulating cursor
functionality with the aid of an external application
that stores record numbers in memory. Now let's
look at how we can apply this concept to a version of
forms that scrolls through a selection set in
ARCEDITW or ARCPLOTW. First we need to
design a dialog box:

BEGIN 0 4.0 0 17.0 60 v Edit
Selection Set
DROP -101 0.0 0 11.0 14 f
PBUT -102 0.0 15 1.5 8 v OK
PBUT -103 0.0 24 1.5 8 v
Cancel
PBUT -104 0.0 33 1.5 4 v <<
PBUT -105 0.0 38 1.5 4 v >>
RBUT -106 0.5 45 1.0 6 v OEM
RBUT -107 0.5 52 1.0 6 v ANSI
LTEXT 111 2.0 0 1.5 20 f
EBOX 112 2.0 20 1.5 40 f
LTEXT 113 3.5 0 1.5 20 f
EBOX 114 3.5 20 1.5 40 f
LTEXT 115 5.0 0 1.5 20 f
EBOX 116 5.0 20 1.5 40 f
LTEXT 117 6.5 0 1.5 20 f
EBOX 118 6.5 20 1.5 40 f
LTEXT 119 8.0 0 1.5 20 f
EBOX 120 8.0 20 1.5 40 f
LTEXT 121 9.5 0 1.5 20 f
EBOX 122 9.5 20 1.5 40 f
LTEXT 123 11.0 0 1.5 20 f

EBOX 124 11.0 20 1.5 40 f
LTEXT 125 12.5 0 1.5 20 f
EBOX 126 12.5 20 1.5 40 f
LTEXT 127 14.0 0 1.5 20 f
EBOX 128 14.0 20 1.5 40 f
LTEXT 129 15.5 0 1.5 20 f
EBOX 130 15.5 20 1.5 40 f

Note the addition of arrow buttons that allow the
user to navigate through a selection set. The
example routines in the PLP OnLine Code Pack have
been developed using GUITOOL directives1, and
make certain assumptions about variables set
beforehand. File "cforms.inc" contains variable
declarations common to all routines:

(Continued on page 6)

Point Line Poly 6 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

(Continued from page 5)

&define i -8 &var
&define j -9 &var
&define wksp -18 &var
&define temp -19 &var
&define opt 2 &var
&define program 3 &var
&define cover 4 &var
&define feature 5 &var
&define arraynum 6 &var
&define curpos 7 &var
&define pointer 8 &var
&define numrec 9 &var
&define numit 500 &var
&define origin_it 501
&define origin_val 601

Routine "cforms", the main routine for the
application, assumes that variable [opt] has been set
to GLOBAL (for calculating values of all records in
the set) or CURSOR (to edit values one record at a
time). Variable [program] is set to ARCEDITW or
ARCPLOTW; if ARCPLOTW, then [cover] must be
set to the name of the coverage and [feature] to the
appropriate feature type (POINTS, ARCS, or
POLYS). Variable [numit] contains the number of
items, and [origin_it] is the start variable for the list
of item definitions2.

*AUTHOR PLP
*ROUTINE cforms
c_forms.dlg 1

&define oemtoggle -11 &var

&if &eq CURSOR [opt] &do
 &r cf_open
 &rv [temp]
 &if &eq .FALSE. [temp] &do
 &return .FALSE.
 &end
 &sv [curpos] 0
&end

&rem **** initialize dialog box

&r cf_load
&openw [winfile]
*W L 101 ,
&sv [i] 1
&while &rn [i] 1 [numit] &do

 &cv [j] [i] + [origin_it] - 1
 &extract [temp] %[j] 1
 *W [temp]
 &inc [i]
&end
*W ,
&sv [pointer] [origin_it]
&extract [temp] %[pointer] 1
*W S 101 [temp]
&r cf_init 106
&closew

&rem **** put up dialog box and process
resp

&sv [oemtoggle] 0
*OPEN c_forms.dlg
*PICK 101
 &r cf_store
 &sv [i] 1
 &while &rn [i] 1 [numit] &do
 &extract [temp] %<[i] +
[origin_it] - 1> 1
 &if &eq [temp] %101 &do
 &cv -1 [i] + [origin_it] - 1
 &break
 &end
 &inc [i]
 &end
 &value [pointer] -1
*PICK 102 50
 &r cf_calc
 *CLOSE
*PICK 103 49
 *CLOSE
*PICK 104
 &r cf_calc
 &r cf_curs DEC
 &dec [curpos]
 &r cf_load
*PICK 105
 &r cf_calc
 &r cf_curs INC
 &inc [curpos]
 &r cf_load
*PICK 106
 &r cf_store
 &sv [oemtoggle] 106
*PICK 107
 &r cf_store
 &sv [oemtoggle] 107
*ENDPICK ALL
 &if &ne [oemtoggle] 0 &do
 WIN DB P

Point Line Poly 7 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

 &value [temp] [winrtn]
 WIN DB D 1
 *OPEN c_forms
 WIN DB [temp]
 &end
 &openw [winfile]
 &r cf_init [oemtoggle]
 &closew
 &sv [oemtoggle] 0
*ENDPICK
&if &eq CURSOR [opt] &do
 &r cf_close
&end
&return .TRUE.

The first step, if the CURSOR option is desired, is to
set up the cursor. The steps used in routine
"cf_open" are similar to those developed in the
previous issue:

*ROUTINE cf_open

&rem **** create cursor

&value [wksp] WKSP
&if &eq ARCEDITW [program] &do
 SHOW NUMBER SELECT [numrec]
&else
 &value [temp] [feature] 1 %<len
[feature] - 1>
 WIN SEL W [cover] [temp] [wksp]t
$sel.lis
 SHOW RESELECT [numrec] 0
&end
&if &eq [numrec] 0 &do
 &type "ERROR: No records in
selection set"
 &if &eq ARCPLOTW [program] &do
 & DEL [wksp]t$sel.lis
 &end
 &return .FALSE.
&end
&value [temp] ARC
WIN PATH [temp]\APPS
&type "Starting server..."
WIN RUN ah
&type "Initializing cursor..."
WIN RUNW arrayf U
WIN RUNW arrayf A [numrec]
WIN CB R
&value [arraynum] 1
&if &eq ARCEDITW [program] &do
 &sv [i] 1

 &openw [wksp]t$sel.lis
 &while &rn [i] 1 [numrec] &do
 SHOW SELECT %[i] [temp]
 &write [temp]
 &inc [i]
 &end
 &closew
 WIN RUNW arrayf F [arraynum] [wksp]t
$sel.lis
 & DEL [wksp]t$sel.lis
 SHOW SELECT 1 [i]
 SEL $RECNO IN {[i]}
&else
 WIN RUNW arrayf W [arraynum] [wksp]t
$sel.lis
 WIN RUNW arrayf G [arraynum] 0
 WIN CB R
 &value [i] 1
 RESELECT [cover] [feature] $RECNO IN
{[i]}
 &r cf_flash SELECT
&end
&return .TRUE.

Executables "ah.exe" and "arrayf.exe" are assumed
to reside in the %ARC%\apps directory. The array
server is started, an array is allocated, the array is
populated with record numbers, and the first record
in the set is selected.

The next step is to initialize the dialog box. Routine
"cf_load" loads item values into a storage area
starting at [origin_val]:

*ROUTINE cf_load

&rem **** load item values

&if &eq ARCEDITW [program] &do
 SHOW SELECT 1 -11
 SHOW EDITFEATURE -12
&end
&sv [i] 1
&while &rn [i] 1 [numit] &do
 &extract -1 %<[i] + [origin_it] - 1>
1
 &extract -2 %<[i] + [origin_it] - 1>
3
 &if &eq ARCEDITW [program] &do
 SHOW %-12 %-11 ITEM %-1 [temp]
 &else
 &if &eq %-2 C &do
 MOVEITEM %[cover] %[feature]

Point Line Poly 8 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

%-1 TO [temp]
 &else
 CALC %[cover] %[feature]
[temp] = %-1
 &end
 &end
 &if &eq %-2 D &do
 &rem **** reformat date value
 &value -1 [temp] 3 4
 &value -2 [temp] 5 6
 &value -3 [temp] 7 8
 &sv [temp] "%-2/%-3/%-1"
 &end
 &value %<[i] + [origin_val] - 1>
[temp]
 &inc [i]
&end
&return

DROP widget 101 is loaded with a list of item
names, terminated with a comma, and is set to the
first item. Routine "cf_init" sets the remaining
widgets:

*ROUTINE cf_init

&define oemtoggle -11 &var
&value [oemtoggle] -1

&rem **** enable/disable arrows

&if &eq [opt] CURSOR &do
 &if &eq [curpos] 0 &do
 *W G 104
 *W E 105
 &elseif &eq [curpos] %<[numrec] - 1>
&do
 *W E 104
 *W G 105
 &else
 *W E 104
 *W E 105
 &end
&else
 *W G 104
 *W G 105
&end

&rem *** OEM/ANSI toggle

&if &ne [oemtoggle] 0 &do
 *W S [oemtoggle] 1
&end

&rem **** set LTEXT and EBOX values

&sv [i] 1
&while &rn [i] 1 10 &do
 &cv [temp] [origin_it] + [numit] - 1
 &cv [j] [i] + [pointer] - 1
 &cv -5 109 + ([i] * 2)
 &cv -6 %-5 + 1
 &if &rn [j] [pointer] [temp] &do
 &value [temp] %[j]
 &extract -13 [temp] 1
 &extract -14 [temp] 2
 &extract -15 [temp] 3
 &extract -16 [temp] 4
 &sv [temp] 0 "(I1,T1,'%-13',
T13,'%-14',T17,'%-15',T19,'%-16')"
 *W S %-5 [temp]
 &if &eq %-15 C &do
 *W B %-6 %-14 2
 &elseif &eq %-15 D &do
 *W B %-6 %-14 1
 &elseif &eq %-16 0 &do
 &if &rn %-14 1 10 &do
 *W B %-6 %-14 3
 &else
 *W B %-6 10 3
 &end
 &else
 &if &rn %-14 3 20 &do
 *W B %-6 %-14 4
 &else
 *W B %-6 20 4
 &end
 &end
 &value -18 %<[j] + [origin_val] -
[origin_it]>
 &if &eq [oemtoggle] 106 &do
 *W T %-6 OEM
 &elseif &eq [oemtoggle] 107 &do
 *W T %-6 ANSI
 &end
 *W S %-6 %-18
 *W E %-6
 &else
 *W S %-5
 *W S %-6
 *W G %-6
 &end
 &inc [i]
&end
*W F 112
&return

Point Line Poly 9 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

The arrow button widgets are enabled or disabled
depending on the forms option and the position in
the selection set. The OEM/ANSI toggle is set if
needed, and finally the LTEXT and EBOX widgets
are populated from the item definition and item value
lists.

For most return widget options, values in the EBOX
widgets are stored back to the value list before
anything further is done:

*ROUTINE cf_store

&rem **** store dialog attribute values

&cv -1 [origin_val] - [origin_it]
&sv [i] 1
&while &rn [i] 1 10 &do
 &cv [temp] [origin_it] + [numit] - 1
 &cv [j] [i] + [pointer] - 1
 &if &rn [j] [pointer] [temp] &do
 &value %<[j] + %-1> %<110 + ([i]
* 2)>
 &end
 &inc [i]
&end
&return

If an item is picked in the DROP widget, variable
[pointer] is altered accordingly and the dialog
reinitialized. Clicking OK or the <Enter> key
performs a calculation before closing the dialog,
whereas the CANCEL or <Esc> key skips the
calculation step. Routine "cf_calc" recalculates the
items based on the values put back into the value list:

*ROUTINE cf_calc

&rem **** calculate attributes

&r cf_store
&sv [i] 1
&while &rn [i] 1 [numit] &do
 &value -1 %<[i] + [origin_it] - 1>
 &value -2 %<[i] + [origin_val] - 1>
 &extract -3 -1 1
 &extract -4 -1 3
 &value -5 -2
 &if &eq ARCEDITW [program] &do
 &if &eq "%-4" "C" &do
 MOVEITEM '%-5' TO %-3
 &else

 CALC %-3 = %-5
 &end
 &else
 &if &eq "%-4" "C" &do
 MOVEITEM %[cover] %[feature]
'%-5' TO %-3
 &else
 CALC %[cover] %[feature] %-3 =
%-5
 &end
 &end
 &inc [i]
&end
&return

If an arrow button is clicked, the current record is
recalculated and the next or previous record selected
and item values reloaded. Routine "cf_curs"
performs the cursor operation:

*ROUTINE cf_curs

&define cur -1 &var

&rem **** select next or previous
record

&if &eq DEC [cur] &do
 &cv [temp] [curpos] - 1
&else
 &cv [temp] [curpos] + 1
&end
WIN RUNW arrayf G [arraynum] [temp]
WIN CB R
&value [i] 1
&if &eq ARCEDITW [program] &do
 SHOW SELECT 1 [temp]
 WIN RUNW arrayf S [arraynum]
[curpos] [temp]
 SEL $RECNO IN {[i]}
&else
 &r cf_flash UNSELECT
 ASEL [cover] [feature]
 RESELECT [cover] [feature] $RECNO IN
{[i]}
 &r cf_flash SELECT
&end
&return

Note that in the case of ARCEDITW the updated
record number is put back in the array before
retrieving the next or previous record number.

Point Line Poly 10 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

The OEM/ANSI toggle requires that the dialog box
be destroyed and recreated. Note that pin mode is
temporarily set to preserve the position of the dialog
box. Finally, routine "cf_close" restores the
selection set and closes and removes the cursor:

*ROUTINE cf_close

&rem **** restore selection set

&if &eq ARCEDITW [program] &do
 &sv [i] 0
 &while &rn [i] 0 %<[numrec] - 1> &do
 WIN RUNW arrayf G [arraynum] [i]
 WIN CB R
 &value [j] 1
 ASEL $RECNO IN {[j]}
 &inc [i]
 &end
&else
 &value [wksp] WKSP
 &value [temp] [feature] 1 %<len
[feature] - 1>
 WIN SEL R [cover] [temp] [wksp]t
$sel.lis
 & DEL [wksp]t$sel.lis
 &r cf_flash SELECT
&end

&rem **** remove cursor

&type "Removing cursor..."
WIN RUNW arrayf R [arraynum]
WIN RUNW arrayf D
WIN RUNW arrayf N
WIN CB R
&value [i] 1
&if &eq [i] 0 &do
 &type "Closing server..."
 WIN RUNW arrayf C
&end
&return

In ARCPLOTW, routine "cf_flash" is used to
indicate the currently selected feature:

*ROUTINE cf_flash

&rem **** draw selected records

&define option -1 &var
&define symbol -2 &var

&if &eq SELECT [option] &do
 &sv [symbol] 5
&else
 &sv [symbol] 8
&end
&if &eq POINTS [feature] &do
 MARKERSET COLOR.MRK
 POINTMARKERS [cover] [symbol]
&elseif &eq ARCS [feature] &do
 LINESET COLOR.LIN
 ARCLINES [cover] [symbol]
&elseif &eq POLYS [feature] &do
 SHADESET COLOR.SHD
 POLYGONSHADES [cover] [symbol]
&end
&return

Additional routines in "cforms.gui" — "aeforms",
"apforms", and "cf_items" — are used to implement
command line versions of the "cforms" routine. See
the PLP OnLine Code Pack for the code.

1See V6N4 and V6N5 for articles discussing
GUITOOL.
2Routine GETITEM in V6N5 and cf_items in the
PLP Online Code Pack for this issue give examples
of routines to populate the item list.

PLP

Point Line Poly 11 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

Rotating GraphicText
Rotating GraphicText objects in ArcView is not as
simple a task as it may seem. As the following
figure illustrates, when a GraphicText object has a
nonzero angle its "apparent" insertion point is not the
same as the actual one:

Thus, when rotating graphic text, it's important to
determine the difference between the origin of the
apparent (rotated) bounding box and that of the
actual bounding box. The following script will
calculate the difference to a sufficiently accurate
degree for placement:

'GTOffset
'Get offset correction for GraphicText

'Arguments:
' g = theGraphicText
' sf = text scale factor
' (display units per point of text)
'Returns: point

g = SELF.Get(0)
sf = SELF.Get(1)

a0 = g.GetAngle
while (a0 >= 180)
 a0 = a0 - 360
end
while (a0 <= -180)
 a0 = a0 + 360

end
if (a0 = 0) then return (0@0) end

x0 = g.GetBounds.GetLeft
y0 = g.GetBounds.GetBottom
sz = g.GetSymbol.GetSize * sf
nml = g.GetText.AsTokens(nl).Count
sp = g.GetSpacing
sz = sz + ((nml - 1) * sp * sz)
dx = 0
dy = 0
if ((a0 >= 90) or (a0 < -90)) then
 dx = g.GetBounds.GetWidth.Negate
end
if (a0 < 0) then
 dy = g.GetBounds.GetHeight.Negate
end
SinOffset = sz * a0.AsRadians.Sin
CosOffset = sz * a0.AsRadians.Cos
if ((a0 > 0) and (a0 < 90)) then
 dx = dx - SinOffset
elseif (a0 > 90) then
 dy = dy + CosOffset
elseif ((a0 < 0) and (a0 > -90)) then
 dy = dy + CosOffset
elseif (a0 < -90) then
 dx = dx - SinOffset
end
return (dx@dy)

Note the requirement of a scale factor equal to the
number of display units per text point size. For
layouts this should be 1/72, but for views this may be
calculated as:

sf = theView.ReturnScale / ppu

Where "ppu" is the number of points per View unit.
The following script will rotate selected
GraphicShape and GraphicText objects about a user-
defined point in either a View or Layout:

theTitle = "Rotate Graphic Shapes and
Text"
d = av.GetActiveDoc
AxisPoint = d.GetDisplay.
ReturnUserPoint
if (d.Is(View)) then
 theUnits = d.GetUnits.AsString.

h

h sin

“t
ru

e”
 in

se
rti

on
 p

oi
nt

“apparent”
insertion point

Point Line Poly 12 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

Substitute("_"," ").Extract(2)
 if (theUnits = "UNKNOWN") then
 MsgBox.Info("View map units must
be defined",theTitle)
 exit
 elseif (theUnits = "FEET") then
 ppu = 72 * 12
 elseif (theUnits = "METERS") then
 ppu = 72 * 100 / 2.54
 else
 theMsg = "Your map units are not
supported."+NL+
 "Please add a points per
unit"+NL+
 "conversion to this
script."
 MsgBox.Info(theMsg, theTitle)
 exit
 end
 sf = d.ReturnScale / ppu
elseif (d.Is(Layout)) then
 sf = 1 / 72
else
 theMsg = "Active document must be
Layout or View."
 MsgBox.Info(theMsg, theTitle)
 return nil
end
a = MsgBox.Input("Input angle:",
theTitle,"0")
if (a = nil) then
 return nil
elseif (a = "0") then
 return nil
elseif (a.IsNumber.Not) then
 return nil
else
 theAngle = a.AsNumber
end
theTrans = Transform2D.Make
theTrans.Move(0@0 - AxisPoint)
theTrans.Rotate(theAngle)
theTrans.Move(AxisPoint)

gl = d.GetGraphics
for each g in gl.GetSelected
 g.Invalidate
 if (g.Is(GraphicShape)) then
 s1 = g.GetShape
 s2 = s1.Transform(theTrans)
 g.SetShape(s2)
 elseif (g.Is(SplineText)) then
 '**** not supported ****
 elseif (g.Is(GraphicText)) then

 x = g.GetBounds.GetLeft
 y = g.GetBounds.GetBottom
 a0 = g.GetAngle
 d = av.Run("GTOffset",{g,sf})
 p0 = x@y - d
 s = g.GetSymbol.Clone
 sp = g.GetSpacing
 al = g.GetAlignment
 t = g.GetText
 a1 = theAngle + a0
 gl.RemoveGraphic(g)
 p1 = p0.Transform(theTrans)
 g = GraphicText.Make(t,p1)
 g.SetSpacing(sp)
 g.SetAlignment(al)
 g.SetSymbol(s)
 g.SetAngle(a1)
 gl.Add(g)
 d = av.Run("GTOffset",{g,sf})
 g.Offset(d)
 g.SetSelected(true)
 end
 g.Invalidate
end

Note the use of the Transform2D class, which is new
in ArcView 3.2. Also note that the script does not
rotate SplineText entities; this is because the
defining PolyLine objects are not retrievable in
Avenue.

Before:

After:

PLP

Point Line Poly 13 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

Stream Ordering

Routine "st_order" may be executed in ARCPLOT/
W to calculate the stream order of an arc coverage.

Usage: &r ST_ORDER [cover] [order_item]
{SHREVE/STRAHLER}

By default, Shreve's method is used:

Before:

After:

In order for the routine to work, certain conditions
must be met:

1) the coverage has clean arc and node topology (no
overlaps)
2) every arc's to_node is downstream from its
from_node
3) the only dangling from_nodes are on order 1
streams
4) the only dangling to_node is on the arc furthest
downstream

5) no braids or splits exist
6) the arc furthest downstream has its order set to -1
7) all other arcs have their order set to some other
value

The routine uses a few global variables:

st_order.inc:

&define cover 2 &var
&define order_it 3 &var
&define option 4 &var
&define node 5 &var
&define order 6 &var
&define first -17 &var
&define wksp -18 &var
&define temp -19 &var
&define opt1 SHREVE
&define opt2 STRAHLER

The first part of the routine finds the arc furthest
downstream:

&routine st_order

&include st_order.inc

&define i -11 &var
&define rec -12 &var

&if &eq "x%-1" "x" &do
 &delim < >
 &type "Usage: &r ST_ORDER [cover]
[order_item] {<opt1>/<opt2>}"
 &delim []
 &return
&end
&extract [cover] -1 1
&extract [order_it] -2 1
&if &eq "x%-3" "x" &do
 &sv [option] [opt1]
&else
 &extract [option] -2 1
&end
&value [wksp] WKSP
LINESET COLOR.LIN
CLEARSELECT
RES [cover] ARC [order_it] = -1
SHOW RESELECT [temp] 0

Point Line Poly 14 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

&if &ne [temp] 1 &do
 &type "One arc in stream network
(the furthest downstream)"
 &type "must have its order set to -
1"
 &return
&end

Then, the network is traced upstream. As each arc is
encountered, a negative number is assigned to its
level in the tree:

&type "Tracing stream network..."
LINESYMBOL 5
&sv [i] -1
&while &do
 ARCS [cover]
 CALC %[cover] ARC %[order_it] = %[i]
 &openw [wksp]t$node.lis
 LIST [cover] ARC FNODE_
 &closew
 CLEARSELECT
 &sv [first] .TRUE.
 &open [wksp]t$node.lis error
 &while &do
 &read [temp] [break]
 &extract [node] [temp] 1
 &if &nm [node] &do
 &if &eq [first] .TRUE. &do
 RES [cover] ARC TNODE_ =
[node]
 &sv [first] .FALSE.
 &else
 ASEL [cover] ARC TNODE_ =
[node]
 &end
 &end
 &end
 &close
 & DEL [wksp]t$node.lis
 SHOW RESELECT [temp] 0
 &if &eq [temp] 0 &do
 &break
 &end
 &dec [i]
&end

For each level in the tree, from_nodes are listed to a
file and arcs with corresponding to_nodes are
selected; this becomes the next level in the tree until
no more arcs are selected:

In the next section we work our way back down
through the levels in the tree. For each arc in the
current level, the stream order is calculated:

&type "Generating stream order..."
LINESYMBOL 4
&while &ne [i] 0 &do
 CLEARSELECT
 RES [cover] ARC [order_it] = [i]
 &openw [wksp]t$rec.lis
 LIST [cover] ARC $RECNO
 &closew
 &open [wksp]t$rec.lis error
 &while &do
 &read [temp] [break]
 &if &nm [temp] &do
 &cv [rec] [temp]
 CLEARSELECT
 RES [cover] ARC $RECNO IN
{[rec]}
 CALC %[cover] ARC [node] =
FNODE_
 &r st_calc
 &rv [temp]
 &if &eq [temp] .FALSE. &do
 &return
 &end
 CLEARSELECT
 RES [cover] ARC $RECNO IN
{[rec]}
 CALC %[cover] ARC %[order_it]
= %[order]
 ARCS [cover]
 &end
 &end
 &close
 & DEL [wksp]t$rec.lis
 &inc [i]
&end

Point Line Poly 15 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

CLEARSELECT
&return

&label error
&type "I/O error"
&close &all
&closew &all
CLEARSELECT
&return

Routine "st_calc" performs the actual stream order
calculation:

&routine st_calc

&include st_order.inc

&define o1 -11 &var
&define o2 -12 &var
&define delta -13 &var
&define sum -14 &var

&value [wksp] WKSP
CLEARSELECT
RES [cover] ARC TNODE_ = [node]
SHOW RESELECT [temp] 0
&if &eq [temp] 0 &do
 &sv [order] 1
 &return .TRUE.
&end
&if &eq [temp] 1 &do
 CALC %[cover] ARC [order] = %
[order_it]
 &return .TRUE.
&end
&openw [wksp]t$order.lis
LIST [cover] ARC [order_it]
&closew
&sv [first] .TRUE.
&sv [delta] .FALSE.
&open [wksp]t$order.lis error 2
&while &do
 &read [temp] [break] 2
 &if &nm [temp] &do
 &cv [o2] [temp]
 &if &eq [first] .TRUE. &do
 &value [o1] [o2]
 &value [sum] [o2]
 &sv [first] .FALSE.
 &continue
 &end
 &if &ne [o1] [o2] &do
 &cv [o1] [o1] max [o2]
 &sv [delta] .TRUE.

 &end
 &cv [sum] [sum] + [o2]
 &end
&end
&close 2
& DEL [wksp]t$order.lis
&if &eq [option] [opt1] &do
 &value [order] [sum]
&else
 &if &eq [delta] .TRUE. &do
 &value [order] [o1]
 &else
 &cv [order] [o1] + 1
 &end
&end
&return .TRUE.

&label error
&type "I/O error: st_calc"
&close &all
&closew &all
CLEARSELECT
&return .FALSE.

Arcs having to_nodes coresponding to current arc's
fron_node are selected. If none are found, the order
is set to 1, and if only one is selected, the order is
preserved. Otherwise, the order is set according to
the current option.

Use "compsml st_order n" to generate st_order.sml
and st_calc.sml. If a steam has a split or braid, the
routine won't blow up, but it will most likely lead to
undesirable results:

PLP

Point Line Poly 16 Volume 7 Number 5

A Technical Friend for ARC/INFO® Users

PLP OnLine
http://www.primenet.com/~piersen/PLP

User Name: plpv7n5
Password: z8f49rav

Blank Variables

As of 3.5.2, and possibly earlier, local variables that
are blank are filled with spaces after executing an
ARC-level command:

&sv -1
&sv -2 #

&type "Before: x%-1x"
&type "Before: x%-2x"

IDENTITY LINECOV POLYCOV XX LINE

&type "After: x%-1x"
&type "After: x%-2x"

After executing IDENTITY, variable -2 will still
contain "#" but -1 will contain 80 spaces. Similarly,
local variables in a routine called by a module are
filled with spaces:

TABLES tabtest.sml

tabtest.sml:

&type "x%-1x"

Variable -1 will contain 80 spaces.

If a variable hasn't been used and a blank value is
needed, you can initialize the variable before you use
it:

&sv -1
DEFINE [outfile]
[item1]
1
C
%-1

Otherwise, wherever possible, assign a non-blank
values:

&if &eq "x%-5" "x" &do
 &sv -10 #
&else
 &sv -10 %-5
&end
IDENTITY [cover1] [cover2] [temp] POLY
%-10
INTERSECT [temp] [cover3] [outcover]
POLY %-10

CA/HI/NV/Guam ESRI Regional Users Conference

The Group's next annual conference will held at
the Ilikai Hotel on Ala Moana Bvld in Honolulu,
Hawaii on February 16-18 (Wed-Fri), 2000 with
some pre-conference events planned as well. For
more info see:

http://www.mp.usbr.gov/mp400/cahinv/cahinvpg.
html

PLP

PLP

